of f_{i} and the value of Δ^{0}. The least-squares criteria minimized the $\sum\left(\nu_{i j(0 b s d)}-\nu_{\mathrm{ij} \text { (calced) }}\right)^{2}$ for all data for a given substrate-shift reagent set for a given type of nucleus ${ }^{1} \mathrm{H}$ or ${ }^{13} \mathrm{C}$; we used the computer program GENLSS. ${ }^{28}$

The results are summarized in Tables 6-1(a) through 6-1(f) of ref 24 .

The scalar errors of the slopes are nearly constant for a given data set. In carrying out the minimization which gave the data in the tables, the scalar error in the directly observed shift data, the ν_{ij} values were minimized. This does not automatically result in scalar errors for the Δ_{i}. Some authors have used relative errors for the $\Delta_{\mathrm{ij}} \mathrm{i5}$ this may have been the correct choice but hardly for the reasons advanced. The form of error distribution can readily be ascertained by standard techniques.

There is a close correspondence between the scalar standard deviations of the observed shift values, the first number listed (based on GENLSS runs), and the scalar standard deviations of the calculated shift values, the second number (based on the data in Table I): for $\mathrm{Bz}-\mathrm{Pro}-\mathrm{OCH}_{3}$ and $\mathrm{Eu}(0.13,0.11), \mathrm{Yb}-{ }^{1} \mathrm{H}(0.1$, 0.25), and $\mathrm{Yb}{ }^{-13} \mathrm{C}(0.5,0.4)$; for $\mathrm{Ac}-\mathrm{Pro}-\mathrm{OCH}_{3}$ and $\mathrm{Eu}(0.15,0.09)$,
$\mathrm{Yb}^{-1} \mathrm{H}(0.24,0.16)$ and $\mathrm{Yb}^{13} \mathrm{C}(0.23,0.3)$.
Computations. Least-squares evaluations of Δ_{i} were performed by use of Genlss. ${ }^{28}$ Figures 1 and 2 were prepared by ortep. ${ }^{29}$ Molecular mechanics computations utilized MOLMEC ${ }^{30}$ and the force field previously described. ${ }^{2}$
Acknowledgment. This work was supported in part by U.S. Energy Research and Development Administration contract No. (40-1)-2690 with the Institute of Molecular Biophysics. We are also grateful to the Computing Advisory Committee for a grant of computing time which made this work possible.

Registry No. Ac-Pro-OCH $3,27460-51-1$; Bz-Pro-OCH $3,5493-38-9$; acetic anhydride, 108-24-7; proline, 147-85-3; H-Pro- OCH_{3}, 2577-48-2.

Supplementary Material Available: Observed and calculated ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ shift values for S -trans-Bz-Pro- OCH_{3} and for S-trans-Ac-Pro- OCH_{3} (5 pages). Ordering information is given on any current masthead page.
(29) ORTEP of Carrol Johnson, Oak Ridge, Tennessee.
(30) D. F. De'Tar, Comput. Chem., 1, 141 (1977).

Regiospecific Electroacetoxylation of 4-Methylphenyl Acetate to Form 4-Acetoxybenzyl Acetate. A Significant Procedure for Vanillin Synthesis Involving Novel Etherification Methods of Aryl Bromides

Sigeru Torii,* Hideo Tanaka, Takasi Siroi, and Mitsuo Akada
Department of Industrial Chemistry, School of Engineering, Okayama University, Okayama, Japan 700

Received January 23, 1979

Abstract

Electroacetoxylation of 4-methylphenyl acetate (1) was carried out in $\mathrm{AcOH}-t-\mathrm{BuOH}(9: 1 \mathrm{v} / \mathrm{v})$ in in the presence of copper(II) acetate by using carbon electrodes to give the side-chain-oxidized products in 88% selectivity (90% conversion), i.e., 4 -acetoxybenzyl acetate ($2 \mathrm{a}, 69 \%$), 4 -acetoxybenzaldehyde ($4 \mathrm{a}, 8 \%$), and 4 -acetoxybenzylidene diacetate ($\mathbf{3}, 3 \%$). The electrolysis products $2 \mathrm{a}, \mathbf{3}$, and $\mathbf{4 a}$, either by platinum oxide catalyzed oxygen oxidation or by acid-catalyzed hydrolysis, were smoothly converted to 4 -hydroxybenzaldehyde (4b) whose bromination provided 3-bromo-4-hydroxybenzaldehyde ($5 \mathrm{a}, 90 \%$) as well as 3,5 -dibromo-4-hydroxybenzaldehyde ($\mathbf{5 b}, 4.5 \%$). Treatment of 5 a with either $\mathrm{ROH}-\mathrm{NaOH}-\mathrm{CaO} / \mathrm{DMF}-\mathrm{CuCl}_{2}$ or $\mathrm{ROH}-\mathrm{BaO}-\mathrm{DMF}-\mathrm{CuCl}_{2}$ resulted in vanillin ($\mathbf{6 a}$, 94%) and ethyl vanillin ($6 \mathrm{~b}, 93 \%$), respectively. On the other hand, acid-catalyzed hydrolysis of 2 a gave 4-hydroxybenzyl alcohol ($11,89 \%$), and acid-catalyzed alcoholysis of 2 a furnished 4 -hydroxybenzyl ethers 8 a (100%) and $8 \mathbf{b}(99 \%)$. The oxygen oxidation of both 8 and 11 can produce $\mathbf{4 b}$ in good yield. 4-Hydroxy-3methoxy(or ethoxy)benzyl ether (10), another key precursor for the vanillin synthesis, was prepared from both 8 and 11 by bromination followed by etherification with $\mathrm{ROH}-\mathrm{BaO}-\mathrm{DMF}-\mathrm{CuCl}_{2}$ in good yield.

Our interest in the electrolytic side-chain oxidation of 4 -cresol homologues was stimulated by the good results obtained from the chemical oxidation of 2,6 -dialkyl-4methylphenols into the corresponding 3,5 -dialkyl-4hydroxybenzaldehydes. ${ }^{1}$ Basically, if the preparation of 4-hydroxybenzyl alcohol (11) and/or 4-hydroxybenzaldehyde (4b) could be accomplished by electrochemical oxidation of 4 -cresol, the procedure would be of remarkable utility since the oxidized products can be widely used as important chemicals in the organochemical industry.

The lack of the regioselectivity in the anodic oxidation of nonmasked phenols ${ }^{2}$ enables us to choose 4 -methylphenyl acetate (1) for our present work. However, some

[^0]patents on the chemistry of the catalytic oxygen oxidation of 1^{3} reveal that the conversion of 1 into $4 \mathrm{a}(\mathrm{Y}=\mathrm{Ac})$ has been shown to occur with less than 31% selectivity (ca. 63% conversion). Our aim, based on electroacetoxylation of the methyl group of 1 , was to generate 4 -acetoxybenzyl acetate (2a), prior to the formation of $4 \mathbf{b}$. Additionally, we examined several approaches to vanillins (6) from the acetate 2a as outlined in Schemes I and II, which involve novel alkoxylation reactions of 2 -bromophenols 5,9 , and 12.

Electroacetoxylation of 4-Methylphenyl Acetate (1). The anodic side-chain acetoxylation of aromatic compounds has been carried out in a variety of solvent-supporting electrolyte-additive systems: $\mathrm{AcOH}-\mathrm{Ac}_{2} \mathrm{O}-\mathrm{AcO}-$ $\mathrm{Na},{ }^{4} \mathrm{AcOH}-\mathrm{AcOK}-\mathrm{Co}^{2+},{ }^{5} \mathrm{AcOH}-\mathrm{Me}_{4} \mathrm{NOTs},{ }^{6}{ }^{6} \mathrm{AcOH}-$
(3) (a) Kato, T.; Iwasaki, H.; Yoshida, K. Japananese Patent 7535066, 1975; Chem. Abstr. 1976, 85, 5360. (b) Bashkirov, A. N.; Vygodskaya, I. U.; Grozhan, M. M.; Lapitskii, Yu. A.; Pokrovskaya, E. G.; Kamzolkin, V. V. British Patent 1403873, 1975; Chem. Abstr. 1975, 83, 178596.

Scheme I

$6 \mathrm{a}, \mathrm{R}=\mathrm{Me}(94 \%)$
b, $\mathbf{R}=\mathrm{Et}(93 \%)$
c, $\mathrm{R}=i-\operatorname{Pr}(37 \%)$
$\mathrm{d}, \mathrm{R}=\mathrm{Bu}(88 \%)$

5a, $\mathrm{Y}=$
H (90\%)
b, $\mathrm{Y}=$
$\operatorname{Br}(4.5 \%)$

7a, 2-acetoxy
b, 3-acetoxy
$\mathrm{Me}_{4} \mathrm{NOTs}-\mathrm{AcOK},{ }^{6} \mathrm{AcOH}-\mathrm{Me}_{4} \mathrm{NNO}_{3},{ }^{6,7}$ and $\mathrm{AcOH}-$ $\mathrm{Me}_{4} \mathrm{NNO}_{3}$-AcOK. ${ }^{6}$ In general, the electroacetoxylation of alkylbenzenes yields mixtures of both side-chain and ring-substituted acetates as well as other byproducts. ${ }^{6}$ The relatively weak electron-donating character of the acetoxy group of 1 led us to anticipate some difficulties in searching for the desirable electrolysis conditions. Nevertheless, we attempted to elucidate influential factors for both the conversion yield and the product selectivity and examined some preliminary electrolyses of 1 under the conditions shown in Table I.

Electrolysis carried out on 1 with $\mathrm{Et}_{4} \mathrm{NOTs}$ (entry 3), in contrast to AcONa^{8} or $\mathrm{Et}_{3} \mathrm{~N}$ (entries 1 and 2), ${ }^{9}$ provided regiospecific results in producing 2 , indicating that the formation of most of the ring-substituted compounds could be suppressed under the conditions in entry 3 . For en-

[^1]

Figure 1. Current-potential curves for 1 (1 mmol) in $\mathrm{AcOH}(10$ mL) with various metal acetates. The measurements were carried out at $18^{\circ} \mathrm{C}$, with $\mathrm{Et}_{4} \mathrm{NOTs}(920 \mathrm{mg}$) as a supporting electrolyte and Pt electrodes $\left(1.5 \times 2.0 \mathrm{~cm}^{2}\right)$. All potentials were measured vs. a Ag wire: (1) background, $\mathrm{AcOH}_{\mathrm{H}} \mathrm{Et}_{4} \mathrm{NOTs}$; (2) 1 in $\mathrm{AcOH}-\mathrm{Et}_{4} \mathrm{NOTs}$; (3) $\mathrm{Co}(\mathrm{OAc})_{2}(0.243 \mathrm{mmol})$; (4) $\mathrm{Ce}(\mathrm{OAc})_{3}(0.222$ $\mathrm{mmol}) ;(5) \mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(0.221 \mathrm{mmol}) ;(6) \mathrm{Mn}(\mathrm{OAc})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ (0.171 mmol); (7) $\mathrm{Pb}(\mathrm{OAc})_{2} 3 \mathrm{H}_{2} \mathrm{O}(0.171 \mathrm{mmol})$; (8) $\mathrm{Fe}(\mathrm{OAc})_{2} \mathrm{OH}$ (0.211 mmol).
hancement of the total yield of the side-chain-oxidized products, addition of metal acetate additives appeared promising since yields were almost doubled by adding $0.24-0.17$ molar equiv of the metal acetates for 1 in the electrolysis solution (entries 4-8), and the use of carbon

Table I. Conditions ${ }^{a}$ and Results of Electroacetoxylation of 4-Methylphenyl Acetate (1)
electrodes improved the conversion yield strikingly in contrast to that of platinum electrodes (entries 5 and 9). To our surprise, the cosolvent of $\mathrm{AcOH}-t-\mathrm{BuOH}$ for the electrolysis resulted in an $83-93 \%$ yield of side-chainoxidized products $2 \mathrm{a}, 3$, and 4 a (entries 12-14).

The current-potential curves of 1 in the presence of metal acetates in $\mathrm{Et}_{4} \mathrm{NOTs}-\mathrm{AcOH}$ are shown in Figure 1. In the absence of the additive, the current began to pass at $0.90-0.95 \mathrm{~V}$ (vs. Ag wire). After addition of $\mathrm{Cu}(\mathrm{OAc})_{2}$, the anodic limit shifted to $0.75-0.80 \mathrm{~V}$ (vs. Ag wire). Similar effects of metal acetates were observed in most cases. These results suggest that the presence of the metal acetate additive facilitates electron transfer from the substrate to the anode on account of a decrease of the oxidation potential of 1 . Furthermore, increasing total yields of the side-chain-oxidized products are felt to be due, in part, to the effect of the additive, i.e., paramagnetic monomeric copper(II) species, ${ }^{10}$ in promoting smooth oxidation of the benzyl radical into the benzyl cation intermediate. On the other hand, addition of $t-\mathrm{BuOH}$ in the electrolysis solution did not give any different cur-rent-potential curve for 1. At present, one can only speculate about positive contributions of $t-\mathrm{BuOH}$ to the fate of the unstable intermediate derived from discharge of the substrate at the vicinage of the anode.
Hydrolysis and Alcoholysis of 2a and 12a. Both base- ${ }^{11}$ and acid-catalyzed alcoholysis of 2 a afforded 8. Similarly, the acid-catalyzed alcoholysis of 12a afforded $9 \mathrm{a}(89 \%)$. However, complete hydrolysis of 2 a in aqueous alkaline media failed to give complex materials. Successfully, we found that the hydrolysis of $2 a$ in aqueous $\mathrm{HClO}_{4}-\mathrm{THF}$ at $50-60^{\circ} \mathrm{C}$ furnished the desired 11 (89%).
Preparation of 4-Hydroxybenzaldehyde (4b) from 2a, 3, 8a, or 11. The PtO_{2}-catalyzed oxygen oxidation of 11 in aqueous 40% glyme afforded 4 b. ${ }^{12}$ Similarly, oxidation of 12 a gave 5 a in good yield. The $\mathrm{PtO}_{2}-\mathrm{O}_{2}$ oxidation of $2 \mathbf{a}$ and 8 a into $\mathbf{4 b}$ in aqueous $1 \% \mathrm{HClO}_{4}-\mathrm{THF}$ was also accomplished. Independently, hydrolysis of 3 in aqueous $2 \% \mathrm{HClO}_{4}-\mathrm{THF}$ also gave 4 b in a quantitative yield.
Bromination of 4b, 8, and 11, Giving 5, 9, and 12. Treatment of $\mathbf{4 b}$ with $\mathrm{Br}_{2}-\mathrm{CHCl}_{3}{ }^{18}$ gave $5 \mathbf{a}(90 \%)$ and $5 \mathbf{b}$ (4.5%). Similarly, treatment of 8a gave $9 \mathrm{a}(\mathrm{R}=\mathrm{Me}, \mathrm{Y}$ $=\mathrm{H}, 78 \%)$ and $9 \mathrm{~b}(\mathrm{R}=\mathrm{Me}, \mathrm{Y}=\mathrm{Br}, 8 \%)$. However, the same treatment of 11 at room temperature provided a 4:1 mixture of $12 a$ and $12 b$ together with byproducts. In order to improve the yield of 12 a , we treated a mixture of 11 and CaCO_{3} in ethanol with $\mathrm{Br}_{2}-\mathrm{EtOH}$ at $-5-3^{\circ} \mathrm{C}$ for 5 h , giving $\mathbf{1 2 a}(\mathrm{Y}=\mathrm{H}, 87 \%)$ and $\mathbf{1 2 b}(\mathrm{Y}=\mathrm{Br}, 7 \%)$.
Conversion of Aryl Bromides into Alkyl Aryl Ethers. To accomplish our overall goal of the preparation of vanillins (6) and their precursors 10 , we explored the novel and practical substitution reaction of the bromides 5,9 , and 12 with alkoxylate, giving the corresponding alkyl aryl ethers 6 and 10. In 1969, Bacon and Rennison reported an efficient copper(I) iodide assisted synthesis of alkyl aryl ethers from the appropriate aryl halides using sodium alcoholate in alcoholic 2,4,6-collidine. ${ }^{14}$ More recently, Baldwin and Gates have found that methoxylation of 4 -tert-butyl-2,6-dibromophenol with $\mathrm{MeOH}-\mathrm{MeONa}-\mathrm{DMF}-\mathrm{CuI}$ gives the corresponding ether in 89% yield. ${ }^{15}$

[^2]Table II. Etherification of Aryl Bromides with $\mathrm{ROH}-\mathrm{NaOH}-\mathrm{CaO} / \mathrm{DMF}-\mathrm{CuCl}_{2}$ or $\mathrm{ROH}-\mathrm{BaO}-\mathrm{DMF}-\mathrm{CuCl}_{2}$
 Table II (entries 2, 7, 8, 10-13).

In an attempt to elucidate the scope of this interesting reaction, we have examined the reactivity of several aryl bromides with the reagent and found that, in most cases, the replacement of the bromine atom of 2-bromo- and/or 2,6-dibromophenols can smoothly proceed, in contrast to the case for 4 -bromophenol (entries 14 and 15). It should be also noted that the reactions of 2 -bromoanisole, 2 bromoaniline, and 4-bromotoluene with the barium oxide solution failed. All of these data tend to indicate that this replacement proceeded through a barium salt intermediate 13 which would facilitate the intramolecular exchange reaction of the bromine atom with alkoxy group (Scheme III).

On the basis of the above assumption, we carried out monomethoxylation of 2,6 -dibromo-4-methylphenol (14) by using the barium oxide reagent. The barium salt 13 free from the solvent was treated with $\mathrm{CuCl}_{2}-\mathrm{DMF}$ to give $15(77 \%)$ along with 16 (3\%). In contrast, treatment of 14 with $\mathrm{MeOH}-\mathrm{BaO}-\mathrm{DMF}-\mathrm{CuCl}_{2}$ with repeated removal and addition of MeOH every 2 h led successfully to 16 .

Experimental Section

IR spectra were recorded on a JASCO IRA-1 grating spectrometer. ${ }^{1} \mathrm{H}$ NMR spectra were determined at 60 MHz with a

[^3]

Hitachi R-24 spectrometer. Chemical shifts are quoted in parts per million downfield from $\mathrm{Me}_{4} \mathrm{Si}$ used as an internal reference. Melting and boiling points are uncorrected. Elemental analyses were performed in our laboratory. Commercially available 4b, 6 a , and $\mathbf{6 b}$ were used as authentic samples in identification.
Electrolytic Acetoxylation of 4-Methylphenyl Acetate (1). A mixture of $1(105 \mathrm{mg}, 0.70 \mathrm{mmol}), \mathrm{Et}_{4} \mathrm{NOTs}(923 \mathrm{mg})$, $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(45.3 \mathrm{mg})$, and $t-\mathrm{BuOH}(1 \mathrm{~mL})$ in $\mathrm{AcOH}(9 \mathrm{~mL})$ was electrolyzed in an undivided cell under a constant current of $30 \mathrm{~mA}, 5.7-6.0 \mathrm{~V}$, for 6.25 h at room temperature. The current direction was changed at every 0.5 min by a commutator. After being concentrated, the residue was taken up in ether and washed with aqueous NaHCO_{3} and brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. The residual oil was treated with $\mathrm{Ac}_{2} \mathrm{O}$ (100 mg) and pyridine (20 mg) for 2 h . The mixture was worked up in the usual manner to give $2 \mathbf{a}^{11}(100 \mathrm{mg}, 69 \%)$, $\mathbf{3}(5 \mathrm{mg}, 3 \%)$, and $\mathbf{4 a}^{16}(9.6$ $\mathrm{mg}, 8 \%$), as well as recovered $1(10.4 \mathrm{mg}, 10 \%)$, after chromatography (SiO_{2}, benzene-hexane- $\mathrm{AcOEt}, 10: 10: 1$).
4-Acetoxybenzylidene Diacetate (3): bp $129-131{ }^{\circ} \mathrm{C}(0.008$ mm); IR (neat) $1760,1615,1509,1373 \mathrm{~cm}^{-1}$; NMR (CCl_{4}) $\delta 2.11$ ($\mathrm{s}, 6, \mathrm{CH}_{3} \mathrm{CO}_{2}$), $2.29\left(\mathrm{~s}, 3, \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{Ar}\right), 7.10(\mathrm{~d}, 2, J=9.6 \mathrm{~Hz}, \mathrm{ArH})$, 7.48 (d, $2, J=9.6 \mathrm{~Hz}, \mathrm{ArH}$), 7.62 (s, 1, OCHO). Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{6}$: C, 58.65 ; H, 5.30. Found: C, 58.78 ; H, 5.21.
Various electrolysis conditions and results are indicated in Table I.

4-Hydroxybenzaldehyde (4b) from 2a. A solution of 2 a (65.0 $\mathrm{mg}, 0.311 \mathrm{mmol})$, aqueous $1 \% \mathrm{HClO}_{4}(2 \mathrm{~mL})$, and $\mathrm{PtO}_{2}(23 \mathrm{mg}$,

[^4]0.101 mmol) in THF (1 mL) under oxygen was vigorously stirred at $50-60^{\circ} \mathrm{C}$ for 16 h . After 3.5 mL of oxygen was consumed, the mixture was diluted with acetone, and the organic layer was worked up to give $\mathbf{4 b}$ ($34.0 \mathrm{mg}, 90 \%$).

Similarly, $\mathbf{4 b}$ was obtained in quantitative yield from 3 on treatment with aqueous $2 \% \mathrm{HClO}_{4}$ in THF at $45-50{ }^{\circ} \mathrm{C}$ for 12 h.

Oxidation of 11 with oxygen, using PtO_{2} in aqueous 40% glyme at room temperature, also gave $\mathbf{4 b}$. 4 b was independently obtained in 76% yield from 8 a on treatment with HClO_{4} and PtO_{2}, and the oxidation of 10 a gave $\mathbf{6} \mathbf{a}$ in 78% yield.

3-Bromo-4-hydroxybenzaldehyde ($5 \mathrm{a}, \mathrm{Y}=\mathrm{H}$) from 4b. To a stirred solution of $\mathbf{4 b}(245 \mathrm{mg}, 2.00 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(5 \mathrm{~mL})$ was added dropwise a mixed solution of $\mathrm{Br}_{2}(0.11 \mathrm{~mL}, 2.1 \mathrm{mmol})$ and $\mathrm{CHCl}_{3}(2 \mathrm{~mL})$, and the mixture was stirred for 0.5 h at room temperature and for 1 h at $40^{\circ} \mathrm{C}$. After the reaction was quenched with aqueous NaHCO_{3}, the organic layer was worked up to give a mixture of $\mathbf{5 a}{ }^{17}(90 \%)$ and $\mathbf{5} \mathbf{b}^{17}(Y=B r, 4.5 \%)$. Similarly, $\mathbf{5 a}$ was obtained in 73% yield by oxidation of 12a.

Vanillin ($6 \mathrm{a}, \mathbf{R}=\mathbf{M e}$) from 5a. Procedure A. To a solution obtained by refluxing a mixture of NaOH ($335 \mathrm{mg}, 7.80 \mathrm{mmol}$) and $\mathrm{CaO}(1.11 \mathrm{~g}, 19.8 \mathrm{mmol})$ in $\mathrm{MeOH}(5 \mathrm{~mL})$ for 7 h under N_{2} was added a mixture of $5 \mathrm{a}(88.2 \mathrm{mg}, 0.439 \mathrm{mmol})$ and CuCl_{2} (28 $\mathrm{mg}, 0.208 \mathrm{mmol}$) in DMF (2 mL). The mixture was stirred for 3 h at ca. $110^{\circ} \mathrm{C}$. After removal of most of the solvent under reduced pressure at ca. $110^{\circ} \mathrm{C}$, the residue was poured into aqueous $5 \% \mathrm{HCl}$. The organic layer was extracted with ether and worked up in the usual manner to give 6 a ($62.8 \mathrm{mg}, 94 \%$), after chromatography (Table II, entry 1). Similarly, etherifications of the compounds $5 \mathrm{a}(\mathrm{R}=\mathrm{Et})$ and $9 \mathrm{a}(\mathrm{R}=\mathrm{Me})$ were carried out and the results are shown in entries 4 and 9.

Procedure B. To a suspension of BaO ($520 \mathrm{mg}, 3.40 \mathrm{mmol}$) in $\mathrm{MeOH}(3 \mathrm{~mL})$ under $\mathrm{N}_{!}$was added a mixture of $5 \mathrm{a}(93.0 \mathrm{mg}$, 0.463 mmol) and CuCl_{2} ($29 \mathrm{mg}, 0.216 \mathrm{mmol}$) in DMF (2 mL). The mixture was stirred for 3 h at $115^{\circ} \mathrm{C}$ and then most of the solvents were removed under reduced pressure. The residue was taken up in MeOH , and the insoluble materials were separated by centrifugation. The organic layer was worked up in the usual manner to give 6 a ($65.9 \mathrm{mg}, 94 \%$, Table II, entry 2). Similarly, etherifications of the compounds $5 \mathrm{a}(\mathrm{R}=\mathrm{Et}, i-\mathrm{Pr}, \mathrm{Bu})$ and 9 a $(\mathrm{R}=\mathrm{Me}, \mathrm{Et}, i-\mathrm{Pr} . \mathrm{Bu})$ as well as 2 - and 4 -bromophenol were carried out, and the results are shown in entries 5, 7, 8, and 10-15.

Isopropyl Vanillin ($6 \mathrm{c}, \mathrm{R}=\boldsymbol{i}-\mathrm{Pr}$): bp $74-76^{\circ} \mathrm{C}(0.02 \mathrm{~mm})$; IR (neat) $3364(\mathrm{OH}), 1680,1595,1512,1390,1379 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.36\left(\mathrm{~d}, 6, \mathrm{CH}_{3}\right), 4.35-4.92(\mathrm{~m}, 1, \mathrm{CH}), 6.57(\mathrm{br} \mathrm{s}, 1, \mathrm{OH})$, 7.01 (d, $1, J=11.2 \mathrm{~Hz}, \mathrm{ArH}$), 7.39 (dd, 1, $J=11.2,2.4 \mathrm{~Hz}, \mathrm{ArH}$), 7.41 (d, $1, J=2.4 \mathrm{~Hz}, \mathrm{ArH}$), 9.79 (s, 1, CHO). Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{3}$: C, 66.65; H, 6.71. Found: C, 66.62; H, 6.80.

Butyl Vanillin ($6 \mathrm{~d}, \mathrm{R}=\mathbf{B u}$): bp $75-78^{\circ} \mathrm{C}(0.015 \mathrm{~mm}$); IR (neat) $3350(\mathrm{OH}), 1678,1594,1510 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.97(\mathrm{t}$, $3, \mathrm{CH}_{3}$), 1.18-2.19 (m, 4, CH_{2}), $4.11\left(\mathrm{t}, 2, \mathrm{CH}_{2} \mathrm{O}\right)$, 6.57 (br s, $1, \mathrm{OH}$), 7.02 (d, $1, J=11.2 \mathrm{~Hz}, \mathrm{ArH}$), 7.41 (dd, $1, J=11.2,2.4 \mathrm{~Hz}, \mathrm{ArH}$), 7.42 (d, $1, J=2.4 \mathrm{~Hz}, \mathrm{ArH}$), 9.80 (s, 1, CHO). Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{3}: \mathrm{C}, 68.02 ; \mathrm{H}, 7.27$. Found: C, 67.97; H, 7.26.

2-Ethoxy-4-(methoxymethyl)phenol (10b, $\mathbf{R}^{1}=\mathrm{Et}$): bp $112-115^{\circ} \mathrm{C}(3 \mathrm{~mm})$; IR (neat) $3390(\mathrm{OH}), 1607,1514 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.41\left(\mathrm{t}, 3, \mathrm{CH}_{3}\right), 3.34\left(\mathrm{~s}, 3, \mathrm{CH}_{3} \mathrm{O}\right), 4.10\left(\mathrm{q}, 2, \mathrm{CH}_{2} \mathrm{O}\right)$, $4.34\left(\mathrm{~s}, 2, \mathrm{CH}_{2}\right), 5.73$ (br s, 1, OH), 6.78-6.99 (m, 3, ArH). Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{3}: \mathrm{C}, 65.92 ; \mathrm{H}, 7.74$. Found: C, $66.16 ; \mathrm{H}, 7.80$.

2-Isopropoxy-4-(methoxymethyl)phenol (10b, $\mathrm{R}^{1}=\boldsymbol{i}-\mathrm{Pr}$): bp $64-66^{\circ} \mathrm{C}(0.008 \mathrm{~mm})$; IR (neat) $3397(\mathrm{OH}), 1604,1511 \mathrm{~cm}^{-1}$; NMR (CDCl_{3}) $\delta 1.32\left(\mathrm{~d}, 6, \mathrm{CH}_{3}\right), 3.35\left(\mathrm{~s}, 3, \mathrm{CH}_{3} \mathrm{O}\right), 4.35\left(\mathrm{~s}, 2, \mathrm{CH}_{2}\right.$), 4.23-4.77 (m, 1, CHO), 5.95 (br s, 1, OH), 6.85 (m, 3, ArH). Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{3}$: $\mathrm{C}, 67.32 ; \mathrm{H}, 8.22$. Found: C, $67.29 ; \mathrm{H}, 8.21$.
2-Butoxy-4-(methoxymethyl)phenol (10b, $\mathbf{R}^{1}=\mathbf{B u}$): bp $80-82{ }^{\circ} \mathrm{C}(0.01 \mathrm{~mm})$; IR (neat) $3403(\mathrm{OH}), 1608,1516 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.97\left(\mathrm{t}, 3, \mathrm{CH}_{3}\right), 1.14-2.08\left(\mathrm{~m}, 4, \mathrm{CH}_{2}\right), 3.34\left(\mathrm{~s}, 3, \mathrm{CH}_{3} \mathrm{O}\right)$, $4.04\left(\mathrm{t}, 2, \mathrm{CH}_{2} \mathrm{O}\right), 4.36\left(\mathrm{~s}, 2, \mathrm{CH}_{2}\right), 5.72$ (broad s, 1, OH), $6.84(\mathrm{~m}$, 3, ArH). Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{3}: \mathrm{C}, 68.55 ; \mathrm{H}, 8.63$. Found: C, 68.40; H, 8.61.

Similarly, 2-ethoxy-4-(ethoxymethyl)phenol (10c, $\mathbf{R}^{1}=\mathbf{R}^{2}$ $=$ Et) was prepared from 9 c in 96% yield: $\mathrm{bp} 125-127^{\circ} \mathrm{C}(3 \mathrm{~mm})$; IR (neat) $3400(\mathrm{OH}), 1611.1514 \mathrm{~cm}^{-1}$; NMR ($\left.\mathrm{CDCl}_{3}\right) \delta 1.22(\mathrm{t}$,

[^5]$\left.3, \mathrm{CH}_{3}\right), 1.42\left(\mathrm{t}, 3, \mathrm{CH}_{3}\right), 3.50\left(\mathrm{q}, 2, \mathrm{CH}_{2} \mathrm{O}\right), 4.12\left(\mathrm{q}, 2, \mathrm{CH}_{2} \mathrm{O}\right), 4.41$ (s, 2, CH 2) , 5.73 (br s, 1, OH), 6.78-7.02 (m, 3, ArH). Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{3}$: C, 67.32; $\mathrm{H}, 8.22$. Found: C, $67.32 ; \mathrm{H}, 8.42$.
Procedure C. To a solution of $\mathrm{MeONa}(6.08 \mathrm{mmol})$ in MeOH (5 mL) under N_{2} was added a mixture of 5 a ($109 \mathrm{mg}, 0.542 \mathrm{mmol}$) and $\mathrm{CuCl}_{2}(25 \mathrm{mg}, 0.186 \mathrm{mmol})$ in DMF (2 mL). The mixture was stirred for 3 h at ca. $115^{\circ} \mathrm{C}$ and worked up in the same manner as described above, giving 6 a ($78.7 \mathrm{mg}, 96 \%$, Table II, entry 3). Similarly, etherification of $5 \mathrm{a}(\mathrm{R}=\mathrm{Et}$) was carried out and the result is shown in entry 6.
Similarly, 10a was also obtained in 80% yield from 12a.
4 -(Methoxymethyl)phenol ($8 \mathrm{a}, \mathbf{R}=\mathbf{M e}$) from 2a. To a stirred solution of $2 \mathrm{a}(78.7 \mathrm{mg}, 0.378 \mathrm{mmol})$ in $\mathrm{MeOH}(3 \mathrm{~mL})$ was added concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ (three drops) at room temperature After being stirred for 6 h , the mixture was quenched with aqueous NaHCO_{3} and then concentrated to ca. 1 mL of the total volume. The residue was taken up in ether and worked up to give $8 a^{18}$ ($52.1 \mathrm{mg}, 100 \%$) after chromatography. Similarly, 8 a was also obtained from 11 in 97% yield.
In a similar manner, 4 -(ethoxymethyl)phenol ($\mathbf{8 b}, \mathbf{R}=\mathbf{E t})^{18}$ was obtained in 99% yield as well as in 85% yield from 11 .
4-Hydroxybenzyl Alcohol (11) from 2a. Hydrolysis of 2a ($54.0 \mathrm{mg}, 0.260 \mathrm{mmol}$) with aqueous $2 \% \mathrm{HClO}_{4}(2 \mathrm{~mL})$ in THF $(1 \mathrm{~mL})$ for 8 h at $50{ }^{\circ} \mathrm{C}$ gave $11^{19}(89 \%)$.
2-Bromo-4-(methoxymethyl)phenol ($9 \mathrm{a}, \mathrm{R}=\mathbf{M e}, \mathrm{Y}=\mathrm{H}$) from 8a. To a solution of $8 \mathrm{a}(468 \mathrm{mg}, 3.39 \mathrm{mmol})$ in $\mathrm{CCl}_{4}(9 \mathrm{~mL})$ and $\mathrm{MeOH}(2 \mathrm{~mL})$ was added a solution of $\mathrm{Br}_{2}(0.164 \mathrm{~mL}, 3.20$ $\mathrm{mmol})$ in $\mathrm{CCl}_{4}(2 \mathrm{~mL})$ at ca. $4^{\circ} \mathrm{C}$. The usual workup gave 9a $(78 \%), 9 b(R=M e, Y=B r, 8 \%)$, and $8 a(13 \%)$, after chromatography.
9a: mp $59-60^{\circ} \mathrm{C}$; IR (neat) $3240(\mathrm{OH}), 1611,1585 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 3.36\left(\mathrm{~s}, 3, \mathrm{CH}_{3}\right), 4.36\left(\mathrm{~s}, 2, \mathrm{CH}_{2}\right), 6.06$ (br s, 1, OH), 6.95 (d, $1, J=7.8 \mathrm{~Hz}, \mathrm{ArH}$), 7.17 (dd, $1, J=7.8,1.5 \mathrm{~Hz}, \mathrm{ArH}$), 7.47 (d, $1, J=1.5 \mathrm{~Hz}, \mathrm{ArH}$). Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{BrO}_{2}: \mathrm{C}, 44.27$; H, 4.12. Found: C, 44.08; H, 4.21. Methanolysis of 12a in the presence of concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ also gave 9 a in 89% yield.
2,6-Dibromo-4-(methoxymethyl)phenol (9b): mp $67-68^{\circ} \mathrm{C}$; IR (Nujol) $3240(\mathrm{OH}), 1598,1559 \mathrm{~cm}^{-1}$; NMR (CDCl_{3}) $\delta 3.36(\mathrm{~s}$, $3, \mathrm{CH}_{3}$), 4.32 (s, 2, CH_{2}), 5.83 (br s, 1, OH), 7.42 (s, $2, \mathrm{ArH}$). Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{Br}_{2} \mathrm{O}_{2}$: C, 32.47; H, 2.72. Found: C, $32.59 ; \mathrm{H}, 2.46$. Similarly, 2-bromo-4-(ethoxymethyl)phenol (9c, R = Et, Y $=\mathbf{H}$) and 2,6-dibromo-4-(ethoxymethyl)phenol (9d, R = Et, $\mathbf{Y}=\mathbf{B r}$) were obtained from $\mathbf{8 b}$ in 80% and 7% yields.
9c: mp 70-71 ${ }^{\circ} \mathrm{C}$; IR (Nujol) $3190(\mathrm{OH}), 1612,1584,1511 \mathrm{~cm}^{-1}$; NMR (CDCl_{3}) $\delta 1.25\left(\mathrm{t}, 3, \mathrm{CH}_{3}\right), 3.53\left(\mathrm{q}, 2, \mathrm{CH}_{2} \mathrm{O}\right), 4.41\left(\mathrm{~s}, 2, \mathrm{CH}_{2}\right)$, 5.78 (br s, 1, OH), 6.96 (d, $1, J=7.8 \mathrm{~Hz}, \mathrm{ArH}$), $7.20(\mathrm{dd}, 1, J=$ $7.8,1.5 \mathrm{~Hz}, \mathrm{ArH}$), 7.49 (d, $1, J=1.5 \mathrm{~Hz}$, ArH). Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{BrO}_{2}: \mathrm{C}, 46.78 ; \mathrm{H}, 4.80$. Found: C, $46.84 ; \mathrm{H}, 4.66$.

9d: mp 92-93.5 ${ }^{\circ} \mathrm{C}$; IR (Nujol) 3190 (OH), 1600, 1558, 1482 cm^{-1}; NMR (CDCl_{3}) $\delta 1.22\left(\mathrm{t}, 3, \mathrm{CH}_{3}\right), 3.52\left(\mathrm{q}, 2, \mathrm{CH}_{2} \mathrm{O}\right), 4.37(\mathrm{~s}$, $2, \mathrm{CH}_{2}$), 6.93 (br s, 1, OH), 7.43 ($\mathrm{s}, 2, \mathrm{ArH}$). Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{Br}_{2} \mathrm{O}_{2}: \mathrm{C}, 34.87 ; \mathrm{H}, 3.25$. Found: C, 35.06; H, 3.47.

3-Bromo-4-hydroxybenzyl Alcohol (12a, $\mathrm{Y}=\mathrm{H}$) from 11. To a stirred solution of $11(248 \mathrm{mg}, 2.0 \mathrm{mmol})$ and $\mathrm{CaCO}_{3}(412$ $\mathrm{mg}, 4.11 \mathrm{mmol}$) in $\mathrm{EtOH}(2 \mathrm{~mL})$ under N_{2} was added a solution of $\mathrm{Br}_{2}(0.14 \mathrm{~mL}, 2.7 \mathrm{mmol})$ in $\mathrm{EtOH}(1.4 \mathrm{~mL})$ for 5 h at ca. -4 ${ }^{\circ} \mathrm{C}$. The usual workup gave $12 \mathrm{a}^{20}(87 \%)$ and $12 \mathrm{~b}^{21}(\mathrm{Y}=\mathrm{Br}, 7 \%)$, after chromatography.
2-Bromo-6-methoxy-4-methylphenol (15) from 2,6-Di-bromo-4-methylphenol (14). A solution of 14 ($52.2 \mathrm{mg}, 0.196$ mmol) and $\mathrm{BaO}(468 \mathrm{mg}, 3.052 \mathrm{mmol})$ in $\mathrm{MeOH}(3 \mathrm{~mL})$ under N_{2} was refluxed for 1.5 h at $90^{\circ} \mathrm{C}$ and worked up in the usual manner to give $15^{22}(77 \%), 16^{23}(3 \%)$, and the recovered 14 (10.3 $\mathrm{mg}, 20 \%$), after chromatography.

2,6-Dimethoxy-4-methylphenol (16) from 14. The treatment of 14 with BaO and CuCl_{2} in $\mathrm{MeOH}-\mathrm{DMF}$ under N_{2} gave 16

[^6](88%) along with 15 (10%), after chromatography.
Registry No. 1, 140-39-6; 2a, 2937-64-6; 2b, 71118-97-3; 3, 7143-16-0; 4a, 878-00-2; 4b, 123-08-0; 5a, 2973-78-6; 5b, 2973-77-5; 6a, 121-33-5; 6b, 121-32-4; 6c, 71118-98-4; 6d, 71118-99-5; 7a, 13287-30-4; 7b, 71119-00-1; 8a, 5355-17-9; 8b, 57726-26-8; 9a, 71119-01-2; 9b, 71119-02-3; 9c, 71119-03-4; 9d, 71119-04-5; 10a, 5533-03-9; 10b (R'
$=\mathrm{Et}), 5595-79-9 ; 10 \mathrm{~b}\left(\mathrm{R}^{\prime}=i-\mathrm{Pr}\right), 71119-05-6 ; 10 \mathrm{~b}\left(\mathrm{R}^{\prime}=\mathrm{Bu}\right), 71119-06-7$; 10c, 71119-07-8; 11, 623-05-2; 12a, 29922-56-3; 14, 2432-14-6; 15, 71119-08-9; 16, 6638-05-7; a, 104-93-8; b, 104-21-2; c, 14202-31-4; d, 63866-99-9; e, 71155-68-5; 2-bromophenol, 95-56-7; 4-bromophenol, 106-41-2; methanol, 67-56-1; ethanol, 64-17-5; 2-propanol, 67-63-0; butanol, 71-36-3; 2-methoxyphenol, 90-05-1; 4-methoxyphenol, 150-76-5.

Ion Radicals. 44. Reactions with 10-Phenylphenoxazine Cation Radical Perchlorate ${ }^{1,2}$

Henry J. Shine* and Shi-Ming Wu
Department of Chemistry, Texas Tech University, Lubbock, Texas 79409

Received March 6, 1979

Abstract

10 -Phenylphenoxazine cation radical perchlorate $\left(1^{+}, \mathrm{ClO}_{4}^{-}\right)$was prepared by oxidation of 1 with $\mathrm{I}_{2} / \mathrm{AgClO} 4$. Reaction of 1^{+}. with $\mathrm{NO}_{2}^{-}, \mathrm{SCN}^{-}$, and Br^{-}gave excellent yields of 3-nitro- (2), 3-thiocyano- (3), and 3-bromo-10-phenylphenoxazine (4). Reaction with Cl^{-}gave only 14% of 3 -chloro-10-phenylphenoxazine (6). Reaction with Br^{-}gave also 1.9% of 3,7 -dibromo-10-phenylphenoxazine (5), while reaction with Cl^{-}gave also 10% of $7,7^{\prime}$-dichloro-3,3'-bis(10-phenylphenoxazine) (7) and 74% of 1 . Reaction with $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{CH}_{3} \mathrm{OH}$ gave only 1 and $3,3^{\prime}$-bis(10 -phenylphenoxazine) (8), the latter being in yields of about 45%. Reaction with $\mathrm{CN}^{-}, \mathrm{O}_{2}^{-\cdot}$, diethylamine, diisopropylamine, and butylamine gave mostly 1 ($78-92 \%$) and smaller amounts of 8 . Reaction with F^{-}gave mostly 1 with a small amount of 8 and monofluoro $8(9)$. Authentic 2 was prepared, and from it authentic 4 and 6 were obtained. During the preparation of 2 , some peculiarities in the melting point of 3 -nitrophenoxazine were observed but not resolved.

Oxidized states of phenoxazines are to be found in important dyestuffs and indicators (Meldola's blue, litmus) and in some naturally occurring antibiotics (actinomycins) and pigments. ${ }^{3}$ Yet, little is known of the chemistry of the primary, one-electron oxidation states (the cation radicals) of phenoxazines. This is in contrast with what is known about the cation radicals of the analogous thianthrene, phenoxathiin, and phenothiazine. ${ }^{4,5}$ The phenoxazine cation radical itself has, nevertheless, been known for many years, having been made by Kehrmann in the early 1900 s by the oxidation of phenoxazine with Br_{2} and $\mathrm{FeCl}_{3} .{ }^{6}$ The radical nature of the oxidation product was not, of course, recognized, although Kehrmann understood clearly that two stages of oxidation could occur and classified the products later, from oxidations with $\mathrm{H}_{2} \mathrm{O}_{2}$ in $\mathrm{H}_{2} \mathrm{SO}_{4}$ and $\mathrm{H}_{2} \mathrm{O}_{2}$ in HClO_{4}-acetic acid, as monoand diacid salts. The monoacid salt solution had $\lambda_{\max }$ at 530 nm and the diacid salt solution at $460 \mathrm{~nm},{ }^{7}$ which we would now attribute, respectively, to the mono- and dication resulting from one- and two-electron oxidation. The correct formulation of the cation radical was made by Weitz and Schwechten in 1926^{8} and was confirmed experimentally later by others with the potentiometric titration of phenoxazine with $\mathrm{Pb}(\mathrm{OAc})_{4}$ in acetic acid ${ }^{9}$ and photoionization at low temperature. ${ }^{10}$ Confirmation of the cation radical's structure by ESR spectroscopy fol-

[^7]

$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$

lowed, with low-resolution spectra in 1962^{11} and com-plete-resolution spectra in later years. ${ }^{12-14}$

The only other phenoxazine cation radicals which have received attention are the 10 -aryl ones. Detailed ESR characterization of a series of these has been made, in which the cation radicals were obtained by oxidation with nitromethane solutions of $\mathrm{AlCl}_{3}, \mathrm{Tl}(\mathrm{OAc})_{3}$, or $\mathrm{H}_{2} \mathrm{SO}_{4} \cdot{ }^{15}$ The 10 -phenylphenoxazine cation radical has also been obtained by oxidation of the parent compound with FeCl_{3} in acetic acid. ${ }^{16}$

Among these studies, however, no deliberate attempts have been made to study the chemistry of the cation radicals. Musso found that in neutral and alkaline solutions phenoxazine cation radical gave the $1,10^{\prime}$ and $3,10^{\prime}$ dimers of phenoxazine, ${ }^{16,17}$ while Tsujino found that these
(11) Tuck, L. D.; Schiesser, D. W. J. Phys. Chem. 1962, 66, 937.
(12) Lhoste, J.-M.; Tonnard, F. J. Chim. Phys. Phys.-Chim. Biol. 1966, 63, 678
(13) Sullivan, P. D.; Bolton, J. R. J. Magn. Reson. 1969, 1, 356
(14) Chiu, M. F.; Gilbert, B. C.; Hanson, P. J. Chem. Soc. B 1970, 1700.
(15) Clarke, D.; Gilbert, B. C.; Hanson, P. J. Chem. Soc., Perkin Trans. 2, 1975, 1078; 1976, 114.
(16) Musso, H. Chem. Ber. 1959, 92, 2873.

[^0]: (1) (a) Orlando, C. M., Jr. J. Org. Chem. 1970, 35, 3714. (b) Cohen, L. A. Ibid. 1957, 22, 1333. (c) Becker, H. D. Ibid. 1965, 30, 982 . (d) Nishinaga, A.; Itahara, T.; Matsuura, T. Angew. Chem. 1975, 87, 386; Angeu. Chem., Int. Ed. Engl. 1975, 14, 356.
 (2) (a) Fichter, F.; Ackermann, F. Helv. Chim. Acta 1919, 2, 583. (b) Nilsson, A.; Palmquist, U.; Pettersson, T.; Ronlān, A. J. Chem. Soc., Perkin Trans. 1 1978, 696.

[^1]: (4) Eberson, L. J. Am. Chem. Soc. 1967, 89, 4669.
 (5) Koehl, W. J., Jr. U.S. Patent 3448021,1969 ; Chem. Abstr. 1969, 71, 49605.
 (6) Ross, S. D.; Finkelstein, M.; Petersen, R. C. J. Org. Chem. 1970, 35, 781 .
 (7) Ross, S. D.; Finkelstein, M.; Petersen, R. C. J. Am. Chem. Soc. 1967, 89, 4088.
 (8) According to Eberson's anodic acetoxylation, the electrolysis of 4 -methylanisole in $\mathrm{AcOH}-\mathrm{AcONa}-\mathrm{Ac}_{2} \mathrm{O}$ has been shown to give 4methoxybenzyl acetate b as a major product; see ref 4.
 (9) In contrast to the result (Table I, entry 2), the electrolysis of 4-methylanisole ($\mathrm{a}, 0.806 \mathrm{mmol}$) in $\mathrm{AcOH}(10 \mathrm{~mL})-\mathrm{Et}_{3} \mathrm{~N}(1 \mathrm{~mL})$ [Pt electrodes $\left.\left(3 \mathrm{~cm}^{2}\right), 15-19^{\circ} \mathrm{C}, 4 \mathrm{~V}\left(14-8 \mathrm{~mA} / \mathrm{cm}^{2}, 4 \mathrm{~F} / \mathrm{mol}\right)\right]$ gave $\mathrm{b}(54 \%)$ as a major product as well as c (16%), d (13%), and e (6%).

[^2]: (10) Kochi, J. K.; Subramanian, R. V. J. Am. Chem. Soc. 1965, 87, 4855.
 (11) Hayashi, H.; Oka, S. Bull. Inst. Chem. Res., Kyoto Univ. 1974, 52, 514
 (12) Heyns, K.; Blazejewicz, L. Tetrahedron 1960, 9, 67
 (13) Smith, L. I. "Organic Synthesis", Collect. Vol. II; Wiley: New York,
 N.Y., 1943; p 95.
 (14) Bacon, R. G. R.; Rennison, S. C. J. Chem. Soc. C 1969, 312.

[^3]: (15) Baldwin, D.; Gates, P. S. German Offen. 2627874, 1977; Chem. Abstr. 1977, 86, 71074.

[^4]: (16) Papadakis, P. E. J. Am. Chem. Soc. 1945, 67, 1799

[^5]: (17) Paal, C. Ber. Chem. Dtsch. Ges. 1895, 28, 2407.

[^6]: (18) Galetto, W. G.; Hoffman, P. G. J. Agric. Food Chem. 1978, 26, 195.
 (19) "1979-1980 Aldrich Catalog Handbook of Fine Chemicals"; Aldrich Chemical Company, Inc., 1978; p 485.
 (20) Dunning, B., Jr.; Dunning, F.; Reid, E. E. J. Am. Chem. Soc. 1936, 58, 1565.
 (21) Auwers, K.; Daecke, S. Ber. Chem. Dtsch. Ges. 1899, 32, 3373.
 (22) Ueda, S. Yakugaku Zasshi 1962, 82, 714; Chem. Abstr. 1963, 58, 3419 g .
 (23) Coscia, C. J.; Schubert, W. J.; Nord, F. F. J. Org. Chem. 1961, 26, 5085.

[^7]: (1) Part 43: J. Org. Chem. 1979, 44, 915
 (2) Supported by Grant No. D-028 from the Robert A. Welch Foundation.
 (3) Ionescu, M.; Mantsch, H. Adv. Heterocycl. Chem. 1967, 8, 83-113.
 (4) Bard, J. A.; Ledwith, A.; Shine, H. J. Adv. Phys. Org. Chem. 1976, 13, 155-278.
 (5) Shine, H. J. ACS Symp. Ser. 1978, No. 69, 359-75.
 (6) Kehrmann, F. Justus Liebigs Ann. Chem. 1902, 322, 1.
 (7) Kehrmann, F.; Sandoz, M. Ber. Chem. Dtsch. Ges. 1917, 50, 1667.
 (8) Weitz, E.; Schwechten, H. W. Ber. Chem. Dtsch. Ges. 1926, 59, 2307. (9) Michaelis, L.; Granick, S.; Schubert, M. P. J. Am. Chem. Soc. 1941, 63, 351.
 (10) Lewis, G. N.; Bigeleisen, J. J. Am. Chem. Soc. 1943, 65, 2419.

